Model structures on exact categories
نویسندگان
چکیده
منابع مشابه
Model Structures on pro - Categories
We introduce a notion of a ltered model structure and use this notion to produce various model structures on pro-categories. This framework generalizes the examples of [13], [15], and [16]. We give several examples, including a homotopy theory for G-spaces, where G is a pronite group. The class of weak equivalences is an approximation to the class of underlying weak
متن کاملSimplicial Structures on Model Categories and Functors
We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model category provides higher order structure such as composable mapping spaces and homotopy colimits. We ...
متن کاملExact Sequences and Closed Model Categories
For every closed model category with zero object, Quillen gave the construction of Eckman-Hilton and Puppe sequences. In this paper, we remove the hypothesis of the existence of zero object and construct (using the category over the initial object or the category under the final object) these sequences for unpointed model categories. We illustrate the power of this result in abstract homotopy t...
متن کاملModel Structures on Commutative Monoids in General Model Categories
We provide conditions on a monoidal model categoryM so that the category of commutative monoids in M inherits a model structure from M in which a map is a weak equivalence or fibration if and only if it is so inM. We then investigate properties of cofibrations of commutative monoids, rectification between E∞-algebras and commutative monoids, the relationship between commutative monoids and mono...
متن کاملModel structures on the category of small double categories
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2011
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2011.04.010